


T L
_ ..Fu.g & |

- n
A




& Waske

Muclear

& Hard Coal
® Hydro

@ Matural Gas

L ] Eingpergy

@ Lignite




Nuclear
Hydro
Matural Gas
Biosnergy
Wind




N
' Nuclear \I &
Hydro
Matural Gas I,J"'I z
Binener?y,f"

—
-\____I
_—
— .-"'I-- (,_-"'__
|
_:-
_-.-___-'_F-'_P.(-}f
l:_'r--
.-""_-=--l



Where does all the (woody) biomass
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Wallonia &  Neighboring
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Biomass Flows in the Flemish Economy, 2019



Wallonia &  Neighboring

Flanders .
Brussels countries

Pre-consumer Post-consumer
. i . ) Household waste

industrial waste industrial waste
430kton 390kton 160kton

200kton
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Import Waste management companies sl Export

130kton

140kton
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300kton
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40kton
Wood-panel producer Incinerated within Energy producer
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130kton

Biomass Flows in the Flemish Economy, 2019



N the past, ELIA's considered
cogeneration plants as must-run units

2Valorise's cogeneration plant



Revoking the support led to shutdown
of the waste-powered CHP unit in Ham

2Valorise's cogeneration plant

A historic day for the Belgian Energy Transition, a sad day for our Limburg
subsidiary 2Valorise Ham: On the day that the Federal government announces an
agreement regarding the extended opening of 2 nuclear power plants in the short
term in order to guarantee security of supply, the Flemish government succeeds in
bringing a renewable biomass plant in Flanders, which runs on local, woody waste
streams, to a standstill. In parallel, many other renewable energy players in Belgium
have to spend money on expensive lawsuits to avoid being overturned as well,
Resources and human energy that are better invested in the necessary energy
transition! It was with great sadness that we had to say goodbye to the driven &
professional team of 2Valorise Ham today in all serenity. We support them all in
finding an equal job and keep in touch. We are not giving up and continue to
invest in the energy transition, but with the necessary delay. We continue to carry
out the ongoing investments in Wallonia, the innovative projects continue and in
parallel we conduct the dialogue with the Flemish and Federal authorities, counting
on them to come to an understanding that the current approach is not the right

ane. - Filip Lesaffer (CEO 2Valorise)



‘N which conditions have cogeneration
olants a future in the energy transition?

2Valorise's cogeneration plant future cogeneration plant
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to the security of supply and the stability
of the electrical grid in Belgium

vus

VRIJE

UNIVERSITEIT

BRUSSEL

S

2VALORISE

‘O ENTRAS



P economie

FOD Economie, K.M.O., Middenstand en Energie

How can we optimize cogeneration

olants to take a flexible role

N the future?
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Create a framework that enables us
to simulate the cogeneration system



Cover residential heat and power demand
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Provide energy while reducing the emission,
and allowing the cogeneration to benefit

electricity arid 44—
R
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erratc< l

renewables

|
|
% / :
Optimize l

- cash flow CHP m NN
- total emissions(!) mm‘_ . P9

residential
consumers

(1) disclaimer: total emissions implies the use of any available resource



Cvery cogeneration plant is unigue!
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Via open literature, we model the cost and
emissions based on power and heat production

power

power

cost{power neat)

—
neat

emission(power)

neat
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This framework enables us to optimize
any dynamic energy system

power
cost(|power) %«— GEHHO
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Renewable and demand data has been
iINcorporated via open sources

power
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emissions(|power|
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The genetic algorithm adapts the capacities
to find a design which optimizes the objectives

power
cost( power} ﬁ‘_
emissions(|power|)
0 1Gw l\ —>
power
B et <4— h heat
0 1GW apm cost(power heat)
emissions(power)
outer loop: l

Design variables: neat
- capacity \WT and PV mmm 0 cost(neat)

emissions(heat)

OpbJjectives:
- maximize cash flow CHP
- minimize total emissions



The framework (RHEIA) IS open source
oublished and fully documented

Avallable on Github
documented on Read The Docs
Published in Journal of Open Source Software

Used in 10+ applications

Micro gas turbine, renewable hydrogen,
ouilding performance, biomass power plant, ..

/~RHEIA



The genetic algorithm adapts the capacities
to find a design which optimizes the objectives
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Results of the design optimization of
the traditional cogeneration plant
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Results of the design optimization of
the traditional cogeneration plant

3000 8000
cash flow cash flow
(103 €] [+103 €]
4900 49¢ N
05 = 25 1630 2200

ratio of total variable renewable capacity total emissions [kgl

and peak demand [-]



Results of the design optimization of
the traditional cogeneration plant
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What If we decouple our heat demand?
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Results of the design optimization of
the decoupled cogeneration plant
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Results of the design optimization of
the decoupled cogeneration plant
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Results of the design optimization of
the decoupled cogeneration plant

SO00
o000

power cash flow
[M\K/] . [-103€]
40
4900 -
0 1630 2200

heat MWW, 137 total emissions [kg]



Would a battery stack nelp our
cogeneration plant?
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Results of the design optimization of
the flexible cogeneration plant



Results of the design optimization of
the flexible cogeneration plant
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Results of the design optimization of
the flexible cogeneration plant
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Results of the design optimization of
the flexible cogeneration plant
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Preliminary conclusions



Preliminary conclusions

Developed a framework for
assessing the CHP's potential



Preliminary conclusions

traditional CHP ¢ «— i
—trade-off between A |
resource utilization and profits l

cash
flow

total emissions 2200



Preliminary conclusions

—— —

—reduced resource utilization and
iNncreased profits at equal
erratic renewable capacities

cash
flow

total emissions 2200



Preliminary conclusions
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Preliminary conclusions

Developed a framework for ﬁ‘__.
assessing the CHP's potential _d |
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erratic renewable capacities

flexible CHP flow
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—uture perspectives

» pulld representative model of biomass- and waste
cogeneration plant



—uture perspectives

» pulld representative model of biomass- and waste
cogeneration plant

e Uncertainty guantification analysis
to assess the plant’s profitability



—uture perspectives

» pulld representative model of biomass- and waste
cogeneration plant

e Uncertainty guantification analysis
to assess the plant’s profitability

* Wwhat Is the potential of biomass and
ts role in the future energy landscape?
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—xamples of uncertainties that will be
iNntegrated Iin the analysis

« Gas price )
» Electricity price > Effect on cash flow
e Biomass price J
« CO. gria -
Effect on total emissions
« CO, CHP
« Lower Heating Value A
« Humidity > Effect on efficiency, cash flow, emissions

« Ambient temperature J
e Investment cost

| Effect on levelized cost
« Operational cost



Results of the design optimization of
the flexible cogeneration plant
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