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Where does all the (woody) biomass 
and waste go?
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2Valorise’s cogeneration plant

In the past, ELIA’s considered 
cogeneration plants as must-run units



Revoking the support led to shutdown 
of the waste-powered CHP unit in Ham

2Valorise’s cogeneration plant

- Filip Lesaffer (CEO 2Valorise)



In which conditions have cogeneration 
plants a future in the energy transition?

2Valorise’s cogeneration plant future cogeneration plant

Extra?



FLEX-CHP
The contribution of biomass- and waste-fired CHP’s

to the security of supply and the stability 
of the electrical grid in Belgium



How can we optimize cogeneration 
plants to take a flexible role 

in the future?



Create a framework that enables us 
to simulate the cogeneration system
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Provide energy while reducing the emission, 
and allowing the cogeneration to benefit

erratic
renewables

electricity grid

traditional CHP

Optimize
- cash flow CHP
- total emissions(!)

residential
consumers

back-up gas boiler

(!) disclaimer: total emissions implies the use of any available resource



Every cogeneration plant is unique!





Via open literature, we model the cost and 
emissions based on power and heat production
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This framework enables us to optimize 
any dynamic energy system

power
cost(|power|)

emissions(|power|)

power
heat
cost(power,heat)
emissions(power)

heat
cost(heat)
emissions(heat)



power
heat
cost(power,heat)
emissions(power)

year

heat
cost(heat)
emissions(heat)

Renewable and demand data has been 
incorporated via open sources
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Power𝑑𝑒𝑚𝑎𝑛𝑑 =Power𝑖

Heat𝑑𝑒𝑚𝑎𝑛𝑑 =Heat𝑖

Cost𝑖

inner loop:

minimize
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The genetic algorithm adapts the capacities 
to find a design which optimizes the objectives

0 1GW

0 1GW

outer loop:

Design variables:
- capacity WT and PV

Objectives: 
- maximize cash flow CHP
- minimize total emissions



The framework (RHEIA) is open source, 
published and fully documented

Available on Github

documented on Read The Docs

Published in Journal of Open Source Software

Used in 10+ applications

micro gas turbine, renewable hydrogen, 
building performance, biomass power plant, . . .



The genetic algorithm adapts the capacities 
to find a design which optimizes the objectives

dynamic
GEKKO 
model

RHEIA

objectives

design
variables

input data



Results of the design optimization of 
the traditional cogeneration plant
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Results of the design optimization of 
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What if we decouple our heat demand?

Decoupled CHP



Capacity PV and WT
and heat storage tank

Objectives: 
- maximize cash flow CHP
- minimize total emissions

0 1GW

0 1GW

outer loop:

Decoupled CHP

0 15.4MWh



Results of the design optimization of 
the decoupled cogeneration plant
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Results of the design optimization of 
the decoupled cogeneration plant
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Would a battery stack help our 
cogeneration plant?

Flexible CHP



Flexible CHP

Capacity PV and WT,
heat storage tank and 
battery stack

Objectives: 
- maximize cash flow CHP
- minimize total emissions

0 1GW

0 1GW

0 0.5GWh

0 15.4MWh



Results of the design optimization of 
the flexible cogeneration plant
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Results of the design optimization of 
the flexible cogeneration plant
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Results of the design optimization of 
the flexible cogeneration plant
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Preliminary conclusions
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Future perspectives

• build representative model of biomass- and waste 
cogeneration plant

• uncertainty quantification analysis 
to assess the plant’s profitability

• what is the potential of biomass and 
its role in the future energy landscape?



“Europe now”
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“Europe now”
-unknown

bioenergy



How can we optimize cogeneration 
plants to take a flexible role 

in the future?





Examples of uncertainties that will be 
integrated in the analysis

• Gas price

• Electricity price

• Biomass price

• CO2 grid

• CO2 CHP

• Lower Heating Value

• Humidity

• Ambient temperature

• Investment cost 

• Operational cost

Effect on cash flow

Effect on total emissions

Effect on efficiency, cash flow, emissions

Effect on levelized cost



Results of the design optimization of 
the flexible cogeneration plant
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