


Renewables help us to reach net zero emissions




Transition towards net zero emissions
s hindered by uncertainties
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Transition towards net zero emissions
induces the need for flexible power generation
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Combined heat and power plants can satisty
the heat demand of local buyers
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Combined heat and power plant provide
flexibility in electric and heat networks
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The contribution of biomass- and waste-fired CHP's
to the security of supply and the stability
of the electrical grid in Belgium

vus

VRIJE

UNIVERSITEIT

BRUSSEL

S

2VALORISE

O ENTRAS



The contribution of biomass- and waste-fired CHP's
to the security of supply and the stability
of the electrical grid in Belgium
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General philosophny: "we need to use less and
recycle more, as the best waste Is no waste’
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HOW Mmuch blomass and waste will there be
available in the future in Belgium?




How much biomass will there be
available in the future in Belgium?
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How much biomass will there be
avallapble in the future in Belgium?
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HOw much waste will there be
available in the future in Belgium?




BW1tE created two scenarios for Flanders,
while for \Wallonia and Brussels this is not possible now
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AN uncertain biomass and waste potential
N the future In Belgium
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What If there Is a decrease in energy potential?



What If there Is a decrease In energy potential?

Biomass-fueled cogeneration Municipal waste-fueled cogeneration
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Most likely scenario is the shutdown of some plants



With a reduction in fuel availability.
there Is room for flexibility
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Cvery cogeneration plant has
a unigue feasible region

Feasible Region 1 Feasible Region 2
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A two-step optimization approach optimizes
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INPUt(S) pr————

otimization wnile minimizing investment

capacity
sizing

decisions

CHP
optimize
short-term o
objective(s) IOD'[ITT][IZG
' ong-term
dispateh objective(s)

design




Searching for key performance indicators
for measuring flexipility
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Searching for key performance indicators
for measuring flexipility
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Searching for key performance indicators
for measuring flexipility
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-lexibility index (K1) provides this measure
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Other option Is splitting the flexibility index
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The genetic algorithm adapts the capacities
to find a design which optimizes the objectives
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N the future, CHP adaptations will be included
to iImprove revenue and flexipility
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The genetic algorithm adapts the capacities
to find an optimal design
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Conclusions

an uncertain biomass and waste potential
N the future in Belgium

The performance of CHP plant is modelled

Revenue and flexibility index will be optimized

Additional components and uncertainties will be included
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