Renewables help us to reach net zero emissions

Transition towards net zero emissions is hindered by uncertainties

Transition towards net zero emissions induces the need for flexible power generation

Combined heat and power plants can satisfy the heat demand of local buyers

Combined heat and power plant provide flexibility in electric and heat networks

FLEX-CHP

The contribution of biomass- and waste-fired CHP's to the security of supply and the stability of the electrical grid in Belgium

The contribution of biomass- and waste-fired CHP's to the security of supply and the stability of the electrical grid in Belgium

The contribution of biomass- and waste-fired CHP's to the security of supply and the stability of the electrical grid in Belgium

From Wikiped

From 2Valorise

The contribution of biomass- and waste-fired CHP's to the security of supply and the stability of the electrical grid in Belgium

"One man's trash is another man's treasure"

From Wikipedia

From 2Valorise

General philosophy: "we need to use less and recycle more, as the best waste is no waste"

BWtE created two scenarios for Flanders, while for Wallonia and Brussels this is not possible now

An uncertain biomass and waste potential in the future in Belgium

What if there is a decrease in energy potential?

What if there is a decrease in energy potential?

Biomass-fueled cogeneration

Municipal waste-fueled cogeneration

Most likely scenario is the shutdown of some plants

With a reduction in fuel availability, there is room for flexibility

From next-kraftwerke

Every cogeneration plant has a unique feasible region

A two-step optimization approach optimizes daily optimization while minimizing investment

Searching for key performance indicators for measuring flexibility

Searching for key performance indicators for measuring flexibility

Searching for key performance indicators for measuring flexibility

Flexibility index (FI) provides this measure

Other option is splitting the flexibility index

The genetic algorithm adapts the capacities to find a design which optimizes the objectives

- maximize flexibility index

- maximize flexibility index

- maximize flexibility index

In the future, CHP adaptations will be included to improve revenue and flexibility

The genetic algorithm adapts the capacities to find an optimal design under uncertainties

Conclusions

- an uncertain biomass and waste potential in the future in Belgium
- The performance of CHP plant is modelled
- Revenue and flexibility index will be optimized
- Additional components and uncertainties will be included

Kevin Verleysen

